
ci-,~ ~~~ ~ ~ ~ .. ... 'v-' ,~- -

"t'~~~~~~~~~~~~~~~~~.e ' .- x ~: ·.- . . ,

.- ~~~~~~~~~~~~~~~~~~---.~' '.

,·~~~~~~~~~~ ~ ~~ ~~~~~~~~~~~~ '- .' ' - '-a__-'

·I~~~~~~~~~~-~
i~. '. ... ' ·I . _. .,:. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~:\,. z .7.

,~~~~~~ ~~~~, ' ,O'~S

-: .,Ill ~~·s.. FIMPIATOS FJE ,

-~~r :-:.' ~:- : :.'.--:?'MTNET I.G::C E F:CET:!
, .. , . . ~ · .~. . . . . .

i--3 C) i

L~~~~~~~~~'~ "~> --' ' t~ "" ...~~~~~~~~~~·.... .. "'.·

~~ ~ : ] >,~..-, , ....,-.. .-. ... .-- .. :....-. -- . . . . " , - /..r

t -,i - _ .. .---.;.,/ . . --- t ,\ ,n ' t 

' , 4',,,'*-, ~ ~· I . .

~~~~~~~~~~~~~~~~~~. .e._.. ,= ,q· -'/-: · ·`'-:i i

~~~~~~~\,-'- -':L' ',· 't ~ ' ~ 

c~~~~~':-'-<~ ~ -· ' *',...": , .-:.'~-..: 'P~ B M.r·:-··...' ,- , -x.~~~~1 ~~:M,..;FRAN-.:.-,- _ "
·~~~~~~ .-~I · ;~k~~9.,'- · '~-' -: ':---' "'~='. .. .. '- '.,.""""...-.' .'

~-~~~~~~~~~~~~~~~~~~. ~'M
: : : > ~ B .- . - >, . ~ k ' . ' - . ' , ,' . . -

.. ' h
·t "--r'-- ! , .-~-: .. ,-" %l" Av ~ I~--, , . . . ~~ 1,
- .% '' ' : . ''--G "?:,, ' ."-'"''.q ,1, ' ' ,.1 '' x.'' ',; :~ I 'I.

.i ~ ~ I-"r·_·

,~ '-' · ,'.-'uce ' ' - -. %·.'.-! "
·~ ' -'>'~- :' 7'--' ':--'~" , ' '"'', " '"'3-'- '' . I, .

:; 1 ·j·~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I'.~

' .', ' -.'- . .. '-,'. 
·i :-G ·..'-r~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



SOLAR MODULATION OF-GALACTIC COSMIC RAYS, III:
IMPLICATIONS OF THE COMPTON-GETTING COEFFICIENT

L. A. Fisk
Laboratory for High Energy Astrophysics

Goddard Space Flight Center
Greenbelt, Maryland, 20771

M. A. Forman
Department of Earth and Space Sciences

State University of New York
Stony Brook, New York 11790

W. I. Axford
Department of Applied Physics and Information Science

Department of Physics
University of California

La Jolla, California 92037

ABSTRACT

It is useful to express spectra of modulated galactic cosmic rays

in terms of the Compton-Getting coefficient C. This parameter can

reveal the energy range over which the force-field approximation is

valid, and the range where convection effects dominate over those of

diffusion. A value of C near zero over an extended low energy range,

which according to recent observations is the case for protons, implies

that the radial gradient at low energies can not be large. This small

gradient may imply, in turn, that the diffusion coefficient increases

beyond 1 AU less rapidly than proportional to heliocentric radial

distance and/or there is essentially no scattering for a sizeable

distance from the Sun to earth. The behavior of C with rigidity (or

energy) is discussed in terms of the omni-directional distribution

function fo. Contours of constant fo in the heliocentric distance vs

rigidity plane are useful for illustrating the mean rigidity loss

experienced by cosmic rays in the interplanetary medium.
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Introduction

To understand completely the solar modulation of galactic cosmic

rays, we must measure, among other quantities, the differential energy

spectrum, the radial gradient, and the particle diffusion coefficient.

These quantities, however, are interrelated. The shape of the energy

spectrum, which is the most readily available of the measurements, can

reveal the likely behavior of other quantitites. As we shall discuss,

it is useful to express the spectrum in terms of the Compton-Getting

coefficient C, a coefficient that was originally derived to transform

the differential streaming of cosmic rays between frames of reference

moving relative to each other at constant velocity (Compton and

Getting, 1935; Gleeson and Axford, 1968a; Forman, 1970). The magnitude

of the differential streaming due to convection by the solar wind, and

also the rate at which the differential number density changes due to

energy loss in the expanding wind, can be expressed in terms of C.

The behavior of C with energy can reveal the relative importance of

diffusion, convection, and energy loss processes in determining the

modulated spectrum, as well as indicate the likely magnitude of the

radial gradient and some features of the radial dependence of the

diffusion coefficient.

Forman (1970) noted that in the energy range - 30 - 200 MeV the

Compton-Getting coefficient for the cosmic ray proton spectrum at solar

minimum is essentially zero, which corresponds at these non-relativistic

energies to a differential intensity spectrum with a spectral index

near unity. An extended energy range where C is essentially zero is
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apparently a fundamental feature of the modulated spectrum at low

energies. Recently, Rygg (1970) and Rygg and Earl (1971) have reported

balloon observations that, taken together with satellite observations,

show that the Compton-Getting coefficient is near zero for protons in

the energy range - 30-300 MeV from 1965-1969, i.e. from solar minimum

to solar maximum. It is difficult to determine from the observations

in 1966-1969 exactly how C varies in the range 150-300 MeV. The

observations can be interpreted to imply C near zero only below - 150 MeV.

Also, the balloon observations during solar minimum are in disagreement

with satellite observations in the range - 150-300 MeV, which predict

a slightly larger value of C (Gleeson and Axford, 1968a). The

Compton-Getting coefficient for the helium spectrum obtained by Rygg

(1970) and Rygg and Earl (1971) exceeds zero at solar minimum, corresponding

to a spectrum flatter than that of protons, but it too approaches zero

near solar maximum.

In this paper we discuss the implications of the behavior of the

Compton-Getting coefficient with energy, and, in particular, we consider

conditions in the interplanetary medium that can lead to a near zero

Compton-Getting coefficient at energies below - 200 MeV/nucleon. We

show that an energy range where C passes through zero, from positive

values at high energies to negative at low, is a consequence of the

fact that particles observed at low energies were decelerated in the

interplanetary medium from higher energies (Goldstein et al., 1970;

Gleeson and Urch, 1971). The observation that C is near zero over an

extended energy range implies that the radial gradient of the intensity

must be relatively small, and we consider various radial dependences
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for the diffusion coefficient that can lead to the required small

gradients. We show that the explanations for zero C proposed by Rygg

and Earl (1971) and by O'Gallagher (1972), although able to account for

many features of the problem, contain some inaccuracies. Rygg and Earl

consider that zero C results from balancing the effects of convection

against those of energy loss, but this explanation, which uses the

approximate equations developed by Fisk and Axford (1969) and by

Gleeson (1971), is unlikely to be applicable in the energy range they

consider (- 30-300 MeV/nuclon). The radial gradients that we find are

necessary for C to be near zero over an extended energy range are inconsistent

with the large, energy independent gradients predicted by O'Gallagher (1972).

Modulation equations and the distribution function

The behavior of the cosmic ray differential number density U(r,T)

in the interplanetary medium can be described in terms of a spherically-

symmetric Fokker-Planck equation (Parker, 1965; Gleeson and Axford,

1967):

1 r 2 - 1 ~ 2 1 , 2K~U-~r (r2VU) -~ ar(r v)T (CTU) = r- (r Ka) (1)

Here, r is heliocentric radial distance and T is particle kinetic

energy. The solar wind speed is given by V(r), the particle diffusion

coefficient by K(r,T), and t(T) = (T+2To)/(T+To), with To the rest

energy of a particle. The terms in (1) describe from left to right

the convection, energy loss in the expanding solar wind, and diffusion

of the particles. The differential streaming S(r,T) (radial current

density) is given by Gleeson and Axford (1967):
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S = CV - K u (2)ar

where C = 1 - 3U (ITU)

is the Compton-Getting coefficient. The energy loss term in (1) can

also be expressed in terms of C, or (1) becomes

1 2 (2Kau - au c a 2
a(r K) -TV ar 

=
ar (r V)U (3)

We will discuss the behavior of the Compton-Getting coefficient

with energy (or rigidity), and the implications, not in terms of the

differential number density or intensity (intensity jo = vU/4rr, where

v is particle speed), but rather in terms of the omni-directional

distribution function fo. The function fo represents the number of

particles per unit volume of phase space (d3r d3p where p is particle

momentum) averaged over particle direction, and is related to Jo by

fo = jo/p
2
. For convenience in relating the discussion given here with

other treatments of cosmic ray problems, we express fo as a function of

particle rigidity P = pc/Ze, where c is the speed of light and Ze,

the particle charge. It is useful to discuss the behavior of C in

terms of fo since these two are simply related (Forman, 1970; Rygg

and Earl, 1971).

c P afo (4)C = - 3f ° (4
3fo aP

e.g. C = 0 corresponds to if /8P = 0. The Fokker-Planck equation

(1) or '(3) can also be expressed in terms of f0 , or
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I - (r2K afo) V af P 12 a (r2V)afo (5)
7Tr a r rr - V -2 Tr ap

We will see that the physics involved in the various approximations

that can be made to (1,2,3,and 5) is clearly illustrated when these

approximate equations are expressed in terms of fo. In addition, we

will find that the contours of constant density in phase space (the

contours in the P-r plane along which fo is a constant) are useful for illus-

trating the energy (or rigidity) range over which C can be expected to be zero,

as well as for discussing the mean rigidity loss experienced by particles

in the interplanetary medium.

High Energies

Gleeson and Axford (1968b) argued that the streaming S can be

neglected in (2) at relatively high energies, yielding a simple

first-order equation for the number density known as the force-field

equation. In terms of fo this approximate equation becomes:

afo VPv afo (6)
-r + 3r aP = (6)

This equation is in the form of a one-dimensional Liouville equation

with a*"force" VPv/3K- hence, the name force-field equation. This

"force" is of course not a real force, but merely a convenient

representation for the accumulated effects of convection, diffusion,

and energy loss. The concept of modulation by a force-field is only

valid when we consider the behavior of the entire distribution function,

not the behavior of individual particles. However, as we will discuss

below, the contours of constant fo predicted by (6) can reveal, to a
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certain approximation, the mean rigidity loss experienced by particles.

The solution to (6) is

fo = F(P'(P,r,Z)) (7)

where F(P) is the unmodulated distribution function, the distribution

function determined at some radius r = R where the modulation is

negligibly small. The function P'(P,r,Z) is the result of integrating

the equation

VP
dP = -dr (8)

Subject to the condition P' = P at r = R. The integral is straight-

forward when K is a separable function of P and r, or K = VKl(P)K2(r),

where 5 = v/c; however, the force-field approximation holds and (7) is

valid irrespective of whether K has this form. When K is separable, it

can also be shown that

K(r,P)
C(r,P) = K(r,P,)C(R,P') (9)

where C(r,P) denotes the Compton-Getting coefficient at rigidity P,

determined from the distribution function at radius r.

Fisk and Axford (1969) showed that the condition that must be

satisfied for the force-field equation to hold is:

|2 (C-1) < < 1 (10)

where the tilde denotes characteristic value. The parameter Vr/R is a

measure of the modulation, small values indicating small modulation,

large values indicating that the particles are strongly influenced by

the interplanetary medium. The parameter Vr/K is expected to be small

at high energies since K increases with increasing energy. According

to (10), however, the force-field equation can remain valid even for
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moderate values of Vr/K provided that IC(C-1)/21 < < 1. The Compton-

Getting coefficient is therefore a useful quantity to measure since it

can reveal the energy range over which the force-field equation can be

expected to hold. Note, however, that we should not expect that the

force-field solution will remain an accurate approximation if C passes

through zero from positive to negative values. From (9), it can be seen

that the force-field solution can yield only positive values of C

(provided C(R, P') is positive, as it is for those forms of the

unmodulated spectrum normally considered). However, the force-field

solution may remain valid down to small positive values of C, i.e.

IC(C-1)/21 < < 1, C > 0.

It is instructive, as we do below, to plot contours of constant

fo in the P-r plane. When the force-field equation holds these contours

are determined by P'(P,r,Z). They have a positive slope

dP afo/br VP
dr = -afo/P = (11)

and intersect the boundary r = R at P = P'.

Low Energies

Near 1 AU the force-field equation is expected to hold for cosmic

ray nuclei with energies down to - 150 MeV/nucleon during solar

minimum (Fisk, 1971) and only down to somewhat larger energies during

higher levels of solar activity. To cover the low energy range, where

presumably Vr/K is large, Fisk and Axford (1969) showed that two

approximate equations are possible:

V"Ku r (12)

and
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Iz a(r2VU)- Ia (r2v) B (OTU) O 0 (13)

Equation (12), which is in the form of a simple convection-diffusion

equation (Parker, 1963), has the additional requirement that the energy

spectrum can not be too steep. The essential difference between these

two approximate equations lies in the source of the low energy particles.

When the parameter rr/K > > 1, the modulation is large and it is diffuclt

for low energy interstellar particles to penetrate to the vicinity of

earth. However, if there is a sufficient number of low energy inter-

stellar particles so that despite the substantial modulation, these

are the main source of low energy particles seen at earth, (12) is the

appropriate approximate equation to use. On the other hand, when

Vr/K > > 1, higher energy particles.are effectively cooled to lower

energies in the interplanetary medium. If these higher energy particles

are the main source of low energy particles, (13) is the appropriate

approximate equation. In practice, (13) is probably correct since the

number of low energy interstellar particles required for (12) to hold,

in reasonable models for the interplanetary medium, appears to result in

an energy density for interstellar cosmic rays inconsistent with that

required to account for the observed half-thickness of the gaseous disk of the

galaxy(Goldstein et al., 1970a, b; Gleeson and Urch, 1971; Kellman, 1972).

Equation (13) and its implications have been discussed extensively

by Gleeson (1971). The effects of diffusion are negligibly small

((13) is obtained from (1) by simply neglecting the diffusion term),

and the particles behave in this approximation as if they were essentially
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"frozen-into the solar wind." The particles are simply convected

outward, with the resulting energy loss in the expanding solar wind,

and hence we call (13) the "convection approximation." In terms of

fo, with V constant, (13) becomes

afo 2vP afo
vr - 3rP (14)

which is again in the form of a one-dimensional Liouville equation, where

now the "force" is -2vP/3r. This "force", unlike the "force" in (6),

has a direct physical interpretation in that it describes the action of

the expanding solar wind in cooling the particles. Note that

force =dT = - (15)dr 3r

where here we have used the actual momentum p as opposed to the

rigidity. Since the particles are "frozen-into" the wind d/dr =

(1/V)d/dt, or (15) becomes

dT _ 2V~T
dt = T (16)Tt 3r

on noting that vp = aT. As can be seen from the second term in (1)

or (13), taking V constant, this is just the rate of change in kinetic

energy due to the expansion of the solar wind (Parker, 1965).

The solution to (14) can be expressed

fo = F'(r(P/Pl) ) (17)

where F'(r) is the distribution function at some rigidity Pi. This

solution holds, of course, only for those values of r and P (and P1 )

that lie in the regime where (14) is valid, i.e. where yVr/K > > 1.

Note that (14) is independent of V and K, although it could depend
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on gradients in V. The solution (17), however, depends on the behavior

of V and K at values of r and P outside the regime where (14) holds,

since F'(r) depends on this behavior. Nevertheless, the distribution

function (or the number density) in the convection approximation should

be relatively insensitive to any short-term fluctuations in V and K,

particularly when contrasted with the sensitivity to V and K predicted

for U by (12). It may thus be possible observationally,

by comparing fluctuations in V and K with fluctuations in the intensity,

to see whether (13) and not (12) is in fact the appropriate approximate

equation to use at low energies. However, as is discussed below, the

convection approximation may only be valid at very low energies (< 30 Mev),

and hence such an observation may be difficult to perform due to the

dominant presence of solar cosmic rays (Kinsey, 1970).

Note from (14) that in the convection regime

-C r 2fa = 2. Digo (18)
2fo br 2jo ar

The Compton-Getting coefficient can thus be used to determine the

gradient at low energies (Fisk and Axford, 1969, 1970; Gleeson, 1971).

Note, as was pointed out by O'Gallagher (1972), that the.gradient in the

convection approximation is not a measure of local interplanetary

conditions (i.e. V and K), as it is in, for example, the force-field

approximation. Rather, as is illustrated below, the gradient at low

energies is determined by interplanetary conditions throughout the

inner solar system. Note also that the gradients in the convection

approximation are expected to be small, since C may be near zero
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(Rygg, 1970; Rygg and Earl, 1971). However, the intensity of low

energy particles near earth is substantially reduced over that present

in the interstellar medium. Consequently, there must be a region

beyond the orbit of earth, near the "boundary" of the modulating region,

where the gradient is large. This region is effectively a "boundary

layer" of width - K/V, where the particle behavior is described by (12).

Most of the particles here still come in directly from the interstellar

medium, rather than cooling down from higher energies. This large

gradient might well serve as a useful marker of the end of the modulating

region for deep space probes.

Rygg and Earl (1971) discuss the observation that C~ 0 for protons

in the energy range - 30-300 MeV interms of (13), which, as can be

seen from (18), is consistent with small C provided that the radial

gradient is essentially zero. The difficulty with using (13), however,

is that it is valid only when Vr/K > > 1. This is the appropriate condition

to use, not the condition U )(a - ) < < 1 also considered by Fisk and

Axford (1969), which for small gradients is less stringent. We noted

above that (13) is derived from (1) or (3) simply by neglecting

diffusion terms. When expanded, (3) becomes

K a2 + [ a (r2K) - V] a C a (r2 V)U (19)
+[2 r2 ar Kr C2 ar

Hence, provided that K and the radial gradient of U are not strong

functions of r, the condition for (13) to hold is Vr/K > > 1, i.e.

it is appropriate to use the actual values of V, r, and K for their

characteristic values. In practice, we anticipate that Vr/K is large
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near earth only for very low energies. Using the diffusion coefficient

obtained by Jokipii and Coleman (1968) from power spectra of magnetic

field fluctuations observed near solar minimum, we find that Vr/K for

protons attains a value only - 5 when T - 5 MeV. Even allowing for

the possibility that K decreases with increasing solar activity Vr/K

is unlikely ever to be sufficiently large, or equivalently (13) is

unlikely to hold, in the energy range considered by Rygg and Earl (1971)

(30-300 MeV for protons).

It follows from (17) and (18) that in the convection approximation

3/2
C(rP) 3 r dF'I (20)
2 p1 F' dr P 3/2(

(FF )3/2

where the radial gradient of F' is to be evaluated at r(P/Pl)3/2.

For P < P1 , C is related to the radial gradient at smaller radial

distances. If the gradient is positive, C is negative, and it will

decrease in magnitude with decreasing P provided that gradient, as r

becomes smaller, does not increase too rapidly. In practice, we

anticipate that the radial gradient actually becomes quite small at

small values of r. There is no particularly good reason to assume that

there is extensive scattering (K - 0) at small r. Consequently Vr/K

is small at small r and a gradient can not be maintained.

In the convection approximation, the contours of constant fo in

the P-r planes follow the curves rp3/2 = constant, with a negative slope

dP 2P
dr 3r

Since the particles are effectively "frozen-into" the solar wind in this
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approximation, these contours actually describe the mean trajectories

of particles in phase space. The contours will always occur so that

the particles are being convected radially outward and cooled down

in energy.

Transition Region

The contours of constant fo are presumably continuous from the

regime where the force-field approximation holds (Vr/K<l), through

some transition regime, into the regime of the convection approximation

(Vr/K > > 1). In the force-field approximation the contours have a

positive slope, connecting to the boundary (r = R) at some rigidity P'.

In the convection approximation the slope is negative and the contours

run back towards the boundary and down in rigidity, consistent with

the requirement that the particles are convected outward and cooled.

It follows, therefore, that in the transition regime there must be

a point where the contours are vertical, i.e. where dP/dr - or from

(11) where af/6P = 0. Thus, in the transition regime between the

force-field and convection approximation there must be a point where

the Compton-Getting coefficient is zero. It is our contention that

the observations of Rygg (1970) and Rygg and Earl (1971) apply to the

transition regime, and we discuss below conditions that can lead to

C essentially zero over an extended rigidity (or energy) range. It is

a regime not in which the effects of convection balance those of

energy loss as claimed by Rygg and Earl (1971), but rather where the

terms on the left side of (3) or (19) cancel. The effects of diffusion

are just as important as those of convection or energy loss.
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An Illustrative Numerical Solution

As an illustration of the above considerations consider a model

for the interplanetary medium in which V is a constant and

K = 5xl0170Pexp(r-l)/cm2/sec, where P is in units of MV, and r in units

of AU. This diffusion coefficient, with its $P and exp(r) dependences, is

typical of those used in discussing modulation problems (e.g. Fisk,

1971). Its magnitude, however, is smaller than many previous choices

for K, but is chosen so that the maximum of the modulated intensity

spectrum for protons at 1 AU occurs at - 400 MeV, in agreement with

spectra observed near solar maximum (e.g. Lezniak and Webber, 1971).

With these forms for V and K, and assuming that the unmodulated

intensity spectrum is a power law in total energy with a spectral index

of -2.65, we have solved (1) using the numerical technique developed

by Fisk (1971). On the left side of Figure 1, the unmodulated

spectrum and the modulated spectrum at 1 AU are plotted vs. kinetic

energy, assuming that the particles are protons. Shown also are

the corresponding force-field solution and Compton-Getting coefficient

at 1 AU. Note that the force-field solution is scarely distinguishable

from the numerical solution down to energies where C is small, but

positive. Note also that C is positive at high energies, passes

through zero (corresponding to an intensity spectrum roughly propor-

tional to T), attainsa minimum value, and then approaches

zero from the negative side at low energies. The energy of the

minimum value (- 35 MeV) roughly marks the entry into the regime

where the convection approximation holds, since, as we saw

above, a negative C decreasing in magnitude with decreasing energy
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is characteristic of the convection approximation. This passage of C

through a minimum value, in principle, could be detected observationally.

If so, it would confirm the existence of a regime where the convection

approximation is valid, and thereby would place an upper limit on

acceptable values of K at low energies (K < < Vr). However, there are

conditions, discussed below, that result in a negligible variation of

C away from zero at low energies, and would, therefore, make this

observation practically impossible.

On the right side of Figure 1 are plotted the contours of constant

fo in the P-r plane, obtained using these forms of V, K, and the unmodulated

spectrum. Shown also are the contours predicted by the force-field

and by the convection approximation, and the contours along which Vr/K

is 1 and 30. As can be seen the force-field approximation is valid even

for moderate values of Vr/K and the convection approximation, where

Vr/K ~ 30. Note that the force-field contour becomes vertical for

small K (see (9)), corresponding to C = 0, but only after it is no

longer an adequate approximation. Note also that the convection

contours do not extend indefinitely out in radial distance. As we

discussed above, there is a regime in which (12) is the appropriate

approximation equation lying between where the convection approximation

holds and where the modulation ceases.

Mean Rigidity Loss

The contours of constant fo are also useful for illustrating the

mean loss in rigidity experienced by particles in the interplanetary

medium. Note first that the solution fo(r,P) can be determined, in

general, from a Green's function G(Z, R,6 , r, P) or
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fo(r,P) = F($)G(Z, R, , r, P)@ d (22)

where F(P) is the unmodulated distribution function (at r = R). The

solution can also be expressed

fo (r,P) = F(P"(r, P, Z)) (23)

when it is possible to define contours of constant fo that intersect

the boundary (r = R), or

F(P"(r, P, Z)) = j F(9)G(Z, R, , r, P) ad6 (24)
P

The contour P"(r, P, Z) = constant, along which fo is constant, is

identical to the force-field contour (P'(r, P, Z) = constant) in

the regime where that approximation is valid, and to the contour

rP3 / 2 = constant in the convection approximation. The contours intersect

the boundary r = R at P = P". It is shown in the Appendix to this

paper that to a good approximation the contours of constant fo are

relatively insensitive to whether F(P) or PF(P) is chosen for the

unmodulated distribution function, at least for those forms of F(P)

normally used. Thus

P"(r, P, Z) F(P"(r, P, Z)) = F( )G(Z, R,S ,r, P) '2 dG (25)

where P"(r, P, Z) is the same as in (23) and (24). Dividing (25) by

(24) we find then that

S 6 F(Q)G(Z,R, ,r,PP2d?
P"(r,P,Z) = P (26)

f F($)G(Z,R,e, r,p )e2d
P
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The Green's function, however, is simply the probability that a particle

of charge Ze, entering the interplanetary medium at rigidity , will

reach r with rigidity P. Consequently P"(r,P,z) is approximately the

mean rigidity in the interstellar medium of particles that arrive at r

with rigidity P. Particles arriving at values of r and P connected

by the same contour of constant fo come from the same mean rigidity in

the interstellar medium. For a given r, we can determine the mean

rigidity loss experienced by particles at rigidity P by comparing P

with P"(r,P,Z), i.e. by comparing P with the intersection at the

boundary r = R of the contour through r and P (provided such a contour

exists).

It is important to realize that contours of constant fo do not

describe, in general, the mean trajectory of particles that enter

the interplanetary medium at rigidity P". In general, the contours are

sensitive to the behavior of particles that enter at rigidities other

than P", i.e. they are sensitive to F(P). The contours of constant fo

in the force-field approximation are an exception to this, to a certain

extent. The contours in this regime are determined by an equation

(equation (6)) that contains only first-order derivatives of fo, and

thus are independent of F(P). However, the condition necessary for

the force-field equation to hold,(l0),depends on C which in turn will

depend on F(P). The contours of constant fo in the convection

approximation are mean particle trajectories since here the particles

behave as if they were "frozen-into" the solar wind. However, particles

can arrive on a given contour in this regime from different values of P".
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Note, in Figure 1, that at lower rigidities the contours of

constant fo intersect r = 1 AU both above and below the rigidity where

C = 0. Consequently at these lower rigidities we observe particles

from the same mean rigidity in the interstellar medium at two different

rigidities. This behavior follows from the requirement that particles

arrive at low rigidities principally by being convected outward with

the solar wind. We thus sample particles with the same mean interstellar

rigidity as they penetrate into the region r s 1 AU at higher rigidities

and then again at lower rigidities as they are convected outward having

lost considerable rigidity between the Sun and earth. Note that

particles arriving at progressively lower rigidities below where C = 0

come from progressively higher mean rigidities in the interstellar

medium. For particles to arrive at low rigidites at 1 AU they must

penetrate into small radial distances, the lower the rigidity at 1 AU,

the smaller the radial distance attained by the particles, on the

average.The penetration of particles into small radial distances,

however, depends on their mean interstellar rigidity, the particles

penetrating further with increasing mean interstellar rigidity.

It might be possible to show that low rigidity particles arrive

at 1 AU principally from the region r < 1 AU by comparing fluctuations

in the low rigidity intensity with fluctuations in V and the appropriate

values of K (although the intensity fluctuations are not expected to

be large). For this argument to hold, we require that irregularities

in the interplanetary magnetic field are, for the most part, convected

outward with the solar wind, and not locally generated or damped.

Then,' since the intensity is sensitive to conditions at r < 1 AU,- it
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may show a tendency to vary with fluctuations in V and K that are

displaced in time by up to a few days following the intensity observations.

If the intensity were sensitive to conditions at r > 1 AU, it should

respond to changes in V and K that occur at some earlier time. Note

that the streaming (anisotropy) is a poor measure of the tendency of

low rigidity particles to arrive at 1 AU from the sunward side. The

Compton-Getting coefficient at low rigidities is zero or negative and

the radial gradient is in general positive. Thus, from (2) the

streaming is negative, i.e. more particles will be observed propagating

towards the Sun than away from it. A zero or negative Compton-Getting

coefficient obscures the dominant importance of convection at low

rigidities.

Compton-Getting coefficient near zero for low energy protons

The Compton-Getting coefficient plotted in Figure 1 is not in

good agreement with that found by Rygg (1970) and Rygg and Earl (1972)

in that it is not essentially zero over an extended energy range. As

noted above, C is zero when the terms on the left side of (3) or (19)

cancel each other. We can preserve the approximate balance between

these terms by requiring that bU/ar and a2 U/ar2 are relatively small.

It is better to relie simply on a small gradient to preserve the balance,

rather than on, for example, some peculiar energy dependence for K.

The latter should vary with solar cycle contrary to the observation

that C is always roughly zero at low energies (Rygg, 1970; Rygg and

Earl, 1971). One possible way to achieve the required small gradient

is with a diffusion coefficient whose radial dependence is such that

the ratio Vr/K increases with increasing r, i.e. K increases less
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rapidly than proportional to r (out to the boundary r = R). With

this dependence, the behavior of even moderate energy:particles (e.g.

30 -300 MeV) at values of r near the boundary r = R can be dominated

by convection effects (large Vr/K), while these particles near 1 AU

can still diffuse relatively easily (smaller Vr/K). These particles,

which were cooled down from higher energies, must pass through the

region r < R convected outward at the solar wind speed, i.e. they can

leave the interplanetary medium only at a fixed rate. However, since

the particles can diffuse at smaller r, they will tend to come into

equilibrium, i.e. aU/ar and b2 U/Br2 tends toward small values. Note

that in this case the gradient is determined by conditions throughout

the interplanetary medium, not simply the local values of V and K.

In Figure 2 we have plotted the same quantities as in Figure 1, using

K = 7.5xlO17pP/cm2 /sec for r ! 2.5 AU and infinite thereafter; P is in

units of MV. Here K is independent of r out to the boundary R = 2.5 AU,

and thus Vr/K increases with increasing r. The magnitude of K is

chosen again so that the maximum of the modulated intensity spectrum

for protons at 1 AU occurs at roughly 400 MeV. As can be seen by comparing

Figure 2 with 1, the radial gradient at 1 AU for this second case is

considerably smaller, than in the first, and the variation in C away

from zero at low energies is quite small. Note that C is near zero at

all low energies, and gets progressively smaller in magnitude with

decreasing energy. Hence, the spectrum of galactic cosmic rays can be

extrapolated down to energies where it can not be observed directly

because of the dominant presence of solar cosmic rays simply by

assuming that the slope is unity.
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The contours of constant fo plotted on the right side of Figure 2

remain nearly vertical over a wider rigidity range as r decreases.

Thus C will be near zero at low energies not only at 1 AU but for all

r < 1 AU. The magnitude of the minimum value attained by C increases

for r > 1 AU, but close to 1 AU will still be approximately zero. Thus

a Compton-Getting coefficient that is essentially zero over an extended

energy range is characteristic of the behavior of low energy cosmic rays

throughout the inner solar system, in agreement with the observation

that C is near zero at low energies during all levels of solar activity

(Rygg, 1970; Rygg and Earl, 1971).

We can reduce the radial gradient still further, and as a result

reduce the variation of C away from zero at low energies, by requiring

that there is little cosmic ray scattering for a sizeable distance from

the Sun to earth. This behavior is illustrated in Figure 3 where we

have plotted the relevant quantities using a diffusion coefficient identical

to that used in Figure 2 except now there is essentially no scattering

(K' -) from 0 - 0.7 AU. As noted above, particles tend to arrive at

energies below where C = 0 principally by losing energy as they are

convected outward with the solar wind. The rate of energy loss, which

depends inversely on r (see (16)), is fairly uniform in the region

r < 1 AU, since there is only scattering for 0.7 AU < r < 1 AU. The

radial gradient is thus smaller at low energies and C scarely distinguish-

able from zero. The radial gradient plotted in Figure 3 is in good agree-

ment with the gradient observations of Webber (private communication)

obtained recently from Pioneers 8 and 9, as well as with the theoretical

predictions of Gleeson and Urch (1971).
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Alpha particles

Finally, we note that the behavior of the alpha particle spectrum,

which yields a C > 0 at low energies for solar minimum, but C ' 0 for

solar maximum (Rygg, 1970; Rygg and Earl, 1971), is consistent with

the above considerations. In the models presented here, the Compton-

Getting Coefficient only attains a value near zero at relatively large

values of Vr/K. At a given energy per nucleon, the rigidity of an

alpha particle is twice that of a proton, or K is in general larger.

Thus, for alpha particles at solar minimum Vr/K may not be sufficiently

large for C to be zero at the energy range observed by Rygg (1970) and

Rygg and Earl (1971) (100-260 MeV/nucleon), even though it is sufficiently

large for protons. Near solar maximum, Vr/K at low energies apparently

also attains the required large values for alpha particles.

Summary

We have shown in this paper that the behavior of the-Compton-Getting

Coefficient C with energy (or rigidity) is a useful indicator of how

galactic cosmic rays are modulated in the interplanetary medium.

1) The behavior of the parameter can reveal the energy range over

which the force-field approximation is valid (at energies down to

where IC(C-1)/21 < < 1, C > 0 and where the convection approximation

holds (at energies below where C is a minimum).

2) At 1 AU, the observation of a negative (but small) value of C

at low energies implies that, on the average, low energy particles have
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penetrated into the region between the Sun and earth prior to observation.

3) An extended low energy range where C is near zero implies that

the radial gradient at low energies is small. This small gradient may

imply, in turn, that the diffusion coefficient increases beyond 1 AU

less rapidly than proportional to heliocentric radial distance and/or

there is essentially no scattering for a sizeable distance from the

Sun to earth.

We have shown that it is useful to discuss the behavior of the

Compton-Getting coefficient, and the various approximations that can

be made to the modulation equations, in terms of the omni-directional

distribution function fo. Contours of constant fo in the heliocentric

distance vs. rigidity plane are useful for illustrating the rigidity

(or energy) range over which C can be expected to be zero, as well

as for discussing the mean rigidity loss experienced by particles in

the interplanetary medium.
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Appendix

We wish to show that contours of constant density are relatively

insensitive to whether F(P) or PF(P) is used for the unmodulated

distribution function, at least for those forms of F(P) normally assumed.

Let P"(r,P) define the contour of constant fo corresponding to F(P), and

P"(r,P), the contour corresponding to PF(P). On using (5), P"(r,P) and

P"(r,P) satisfy, respectively

d2 F WIp 2 22p,,K -7 ( + ( K +

(Al)

1 (r2K)-V) aP"+ P 1 2 aP" dF =
r2 ar ar 3 r2 ar P dP

and

dF 2 dF P" 2
K ( ) - - +

dP P dt ar
(A2)

asp, 1 a 2 ap"l P 1 a 2 P" dF F
(K 2 + ( r -7 r (r2 K)-V V + 3 (r ) ) ( + ) =

It is a straight-forward matter to show that these equations will be

approximately the same, i.e. P"(r,P) 'P"(r,P), provided that

2 .dF)2 (F) d2F) 2 dF 2 dF d2F
Ip (d-P) + (P) ~d-PZ] < < 1 (A3)

With F c P7, (A3) is satisfied provided that 11/yj < < 1. We noted above

that fo = ji/p (p is momentum; P = pc/ze), and that, typically, the

unmodulated intensity spectrum is taken to be a power law in total energy

with spectral index 2.65. Thus y runs from y -- -4.65 at large rigidities

(corresponding to T > > To) to y ' -2 at small rigidities. However, the

contours that connect the boundary (r = R) with regions in the inner solar
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system (r < 1 AU) intersect the boundary at relatively large rigidities

(P -1 BV, as can be seen in Figures 1 and 2). Thus, 3 < 7I[ < 4.65

and (A3) is roughly satisfied.
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The unmodulated energy spectrum and modulated energy spectrum

at 1 AU (left side), and contours of constant fo in the

P-r plane (right side). These quantities are determined from

a numerical solution to (1) using K = 5xlO1 7 BPexp(r-l)cm2 /sec

(P is in units of MV;r, in units of AU). Shown also on the

left side is the behavior with energy at 1 AU of the

corresponding force-field solution, Compton-Getting coefficient,

and radial gradient. Shown also on the right side are the

contours predicted by the force-field and by the convection

approximation, and the contours along which Vr/K equals 1 and 30.

The unmodulated energy spectrum and modulated energy spectrum

at 1 AU (left side), and contours of constant fo in the

P-r plane (right side). These quantities are determined from

a numerical solution to (1) using K = 7.5xlO17$Pcm2 /sec

(P is in units of MV;r, in units of AU). Shown also on the

left side is the behavior with energy at 1 AU of the

corresponding force-field solution, Compton-Getting coefficient,

and radial gradient. Shown also on the right side are the

contours predicted by the force-field and by the convection

approximation.

The unmodulated energy spectrum and modulated energy spectrum

at 1 AU, and the behavior with energy at 1 AU of the

corresponding Compton-Getting coefficient and radial gradient.

These quantities are determined from a numerical solution

to (1), using a value for K identical to the one used for

Figure 2, except that here there is essentially no scattering

(k - o) from 0 - 0.7 AU.

Figure 1.

Figure 2.

Figure 3.
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